Complex Geometry Exercises

Week 1

Exercise 1. Prove the following theorems for holomorphic functions in n variables $f: U \to \mathbb{C}$ with $U \subseteq \mathbb{C}^n$:

- (i) Open mapping theorem
- (ii) Maximum principle
- (iii) (Generalised) Liouville theorem

Exercise 2. Prove that there is a one-to-one correspondence between holomorphic germs of $\mathcal{O}_{\mathbb{C}^n,0}$ and convergent power series in $\mathbb{C}[[z_1,\ldots,z_n]]$.

Exercise 3. Finish the proof of the Weierstrass Division Theorem.

Exercise 4. Verify the following statements about analytic and holomorphic germs:

- (i) For any subset $A \subseteq \mathcal{O}_{X,x}$, Z(A) is a well-defined analytic germ with $Z(A) = Z((A)_{\mathcal{O}_{X,x}})$.
- (ii) For every analytic germ Z, $I(Z) = \{ f \in \mathcal{O}_{X,x} \mid Z \subset Z(f) \}$ is an ideal.
- (iii) If $X_1 \subset X_2$ are analytic germ, then $I(X_2) \subset I(X_1)$.
- (iv) If $I_1 \subset I_2$ are ideals in $\mathcal{O}_{X,x}$, then $Z(I_2) \subset Z(I_1)$.
- (v) Z = Z(I(Z)) and $I \subset I(Z(I))$.
- (vi) $Z(I \cdot J) = Z(I) \cup Z(J)$ and $Z(I + J) = Z(I) \cap Z(J)$.

Exercise 5. Prove the weak Nullstellensatz: If $f \in \mathcal{O}_{X,x}$ is irreducible and $g \in I(Z(f))$, then $f \mid g$.